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Executive Summary

This project explores the application of the continuous wavelet transform,
a signal processing technique used for time-frequency analysis; and the
application of specialised ’wavelets’ within the transform.

It is common to represent signals with amplitude as a function of time (i.e.
in the time domain). It is also common, using a Fourier transform, to repres-
ent signals with amplitude as a function of frequency (i.e. in the frequency
domain). Time-frequency representations of signals are three-dimensional
represenations, providing the amplitude of a signal given the time and
frequency. Common techniques for obtaining this representation include
the short time Forier transform, and the the Wavelet transfrom. Unlike
a Fourier transform, the wavelet transform does not represent the signal
using infinite wave trains (sines and cosines), rather it employs oscilations
known as wavelets, shifted in time and frequency. These wavelets are
generated from a ’mother’ wavelet, a function which given parameters for
time and scale, generates a wavelet of that scale, compactly supported for
a given time. The matrix representing the amplitude of these wavelets at
time and scale is the wavelet decomposition of the signal. This allows for
sparse representation of the signal, which is why the wavelet is a common
tool for compression; and since it allows for the representation of transients
within signals, it is also a useful tool for analysis of music, seismic data,
and many other signals.

The admissibility condition defines the properties of acceptable wavelets.
Within this constraint there are still an infinite number of possible wavelets.
As such, different wavelets have been designed throughout different fields,
selected for the properties that best suit their applications.

This project focuses on application of causal wavelets in the continuous
wavelet transform. Since most wavelets are symmetric, the wavelet trans-
form results in the component of a signal being represented in time before
it begins. Causal wavelets are wavelets that have been designed for the
express purpose of ensuring causality in the wavelet transform, such that
components of a signal should only be represented as, or after, they occur.
Causal wavelets are non-symmetric, and a result of their use is that the
transform becomes distorted in time and frequency. The objective of this
project is to produce causal wavelets that minimise this distortion. This
would be useful for analysis of a signal in which causal representation of
the components is necessary (e.g. an active sonar system).
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Executive Summary

It was decided that the best programming environment in which to explore
this concept was python. Matlab and Wolfram Mathematica provided inbuilt
support for the continuous wavelet transform, but it was decided that an
implementing of the wavelet transform from scratch would better match the
requirements of the project.

The design and implementation involved the construction of an object-
ortientated system that could perform the continuous wavelet transform of
any signal using any wavelet (within the limits of representation). Methods
by which graphical representations of the transform are obtained had to be
implemented.

A challenge of implementation was the implementation of metrics with
regards to causality and distortion. The method for calculating a meas-
urement of causality calulated the difference between a prediction of the
start of the transform and the start of the signal. The method to calculate
the distortion sought the local maxima of the transform over two scales
and associated specific maxima in order to trace the angles of distortion
within the transform, calculating an average to provide a rough measure of
distortion. When tested against test signals and real audio, these methods
seemed to perform as expected, with the use of the causal wavelet resulting
in transforms with more causal behaviour and greater angles of distortion
(as evaluated by the methods). Despite doubts regarding the objectivity of
these metrics, they serve as useful comparative measurements.

In order examine the effects of different causal wavelets upon the dis-
tortion in the transform, a test was constructed wherein the distortion
measured in the transform was measured against the a set of causal wave-
lets increasing in the internal frequency of their oscilations. The results
showed that increasing frequency led to better frequency localisation in the
transform, but also resulted in a greater degree of distortion.

Thus a method of cancelling the distortion was contrived using a modified
wavelet that changed in internal frequency as it changed in scale. This
method worked well, whithin certain scales, at cancelling the distortion
whilst maintaining the causality present in the transform. However, this
came at the cost of worsened frequecny localisation of in the transform and
confused the relationship between wavelet scale and frequency (which is
normally simply inversely proportional). This modification in many senses
achieved the goal of cancelling distortion caused by the causal wavelet, but
it likely has very little application in analysis unless it is better refined.

There are no legal, social, ethical, professional or commercial issues
related with this topic of study, or my findings.
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1 Introduction

1.1 Wavelet Analysis

The wavelet transform is a mathematical technique that can be used for
the purpose of signal decomposition. The wavelet transform, unlike the
Fourier transform, does not represent a given signal by a weighted sum of
sinusoids, rather as coefficients over a set of functions known as wavelets.

Developments in wavelet analysis in previous decades were made inde-
pendently across fields such as mathematics, quantum physics, electrical
engineering and seismic geology, and the technique has seen applications
in fields such as astronomy, acoustics, nuclear engineering, music and
magnetic resonance imaging to name a few [1].

Different wavelets exhibit different properties that make them well suited to
uses in particular applications. This is to say that the wavelet selected for a
wavelet transformation has an effect upon the output, and that some wavelet
properties might be more desirable for certain types of analysis. This project
will experiment with modification of wavelets and their symmetries in order
to examine the effects that these modifications have on the wavelet analysis,
with the ultimate goal of finding wavelets that exhibit ’causal’ behaviour with
minimal distortion to the transform.

1.2 Project Structure

Chapter 2 will examine the wavelet analysis within the context of existing
literature. This will involve examining techinques in signal analysis that
preceded wavelet analysis, how a wavelet transform is performed, what a
wavelet is, the applications of the wavelet transform and the idea of causal
wavelets. This section should provide context and the motivations for the
objectives of the project.

Chapter 3 is used to describe the reasoning for the structure of this
project, outlining how objectives have been evaluated to produce explicit,
measurable requirements.

Chapter 4 will cover step-by-step the choices made in designing and
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1 Introduction

implementing a system that fulfils the requirements elicited in 3.

Chapter 5 will discuss my evaluation of the project as per the phases of
the implementation. With reference to my goals throughout the project, I
will describe ways in which I think my project has been successful, and
ways in which I think future work could improve upon mine.
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2 Literature Review

This chapter will cover the relevant research and literature regarding wave-
lets in the context of this project. Section 2.1 will discuss some ideas in
signal processing that can be seen as prerequisites for the wavelet trans-
form. Section 2.2 discusses the wavelet transform, with reference to the
contiuous and discrete definitions. Section 2.3 discusses different types
of wavelets and the functions that define them. Section 2.4 examines the
wavelet transform in the context of music. Section 2.5 discusses the design
of the causal wavelet.

2.1 Progression of Approaches to Signal
Processing

Time and frequency domain representation An important aspect of
signal processing is signal representation. Signals are often represented
in the time domain, where the signal is a function of time [2]. Though it
is intuitive to consider a signal in the time domain, it is often desirable to
observe the constituent frequencies of a signal in the frequency domain.
For a long time Fourier transformations have been a useful tool for this
sort of single domain analysis, allowing mathematicians to transform data
from time domain representation to frequency domain representation and
backwards by means of a couple of transforms. A definition for the forward
Fourier transform is provided in [3] as:

F(s) =
∫ ∞

−∞
f (x)e−i2πxsdx (2.1)

Gabor transform Despite the popularity of the Fourier transform, there
are limitations of being able to observe a signal in one domain. Gabor in his
1945 paper [4] addresses the limitations of representing signals only within
"sharply defined instants of time" or with "infinite wave trains of rigorously
defined frequencies" with a method of representing signals in terms of both
domains simultaneously. Gabor’s solution is a type of Short time Fourier
transform (STFT). The Gabor transform allows for the frequency content
to be analysed at different time intervals. This is done by using Fourier
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2 Literature Review

transforms on the product of the signal and Gaussian window function for
each interval, where the window function has compact support within the
given time interval.

Figure 2.1: A spectrogram representation of, on the left, a drum beat and,
on the right, an excerpt from a piano piece.

Spectrograms A signal that as been analysed in this way can be repres-
ented using a spectrogram. Spectrograms represent time and frequency
simultaneously, and in this way can be interpreted as representing "the
signal strength [...] of a signal over time at various frequencies present in a
particular waveform" [5]. This allows for features such as transients in the
signal to be represented at the time at which they occur.

Uncertainty principle It is worth noting that time and frequency are sub-
ject to the same rule of uncertainty that governs related pairs of variables,
famously described by Heisenberg in the context of the position and mo-
mentum of a particle. In [4] Gabor relates the Heisenberg uncertainty
principle to time and frequency, noting a mathematical identity:

∆t∆ f ' 1 (2.2)

where ∆t and ∆ f are the uncertainties in the time and frequency of an
oscillation. For this reason, lower frequency components of a signal can be
more precisely located in frequency, but are generally less precisely located
in time, and higher frequency components are more precisely located in
time, but are less precisely located in frequency.

Though Short time Fourier transforms can be used to perform effective
time-frequency analysis, there are some limitations inherent to the method.
A fixed window of a short length will have poor representation of low
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frequencies, and a fixed window of long length will have poor localisation of
high frequencies [6].

2.2 The Wavelet Transform

Continuous wavelet transform The wavelet transform can be under-
stood as an alternative method to the Short time Fourier transform that
addresses some of the aforementioned issues. In [7] Daubechies dis-
cusses Morlet’s application of the wavelet transform as a progression from
the Short time Fourier transform. She states that in order to attain good time
resolution for high frequencies and good frequency resolution for low fre-
quencies, Morlet was motivated to devise a different method of generating
the transform functions. This method involves the use of a function known
as a ’mother’ wavelet that is shifted and dilated, which can be considered
as taking the place of exponential e−i2πxs term in the Fourier transform.
Daubechies provides a definition for the continuous wavelet transform in
[8], in which it is represented as:

(Twav f )(a, b) = |a|−1/2
∫

dt f (t)ψ
(

t− b
a

)
(2.3)

Where (Twav f )(a, b) is the wavelet transform of f (x) over the continu-
ous scaling and shifting parameters a and b and the mother wavelet is
represented by ψ.

It should be noted that despite mention of Morlet above, wavelet tech-
niques are considered to have developed independently across different
fields [1].

Discrete wavelet transform The discrete wavelet transform is another
implementation of the wavelet transform. A version of the discrete wavelet
transform is defined in [8] as:

Twav
n,m ( f ) = a−m/2

0

∫
dt f (t)ψ(a−m

0 t− nb0) (2.4)

Upon inspection, this is not all too different from the continuous wavelet
transform, both functions use the inner products of f and the generated
wavelets. The variables m and n discretise the wavelet sampling. Computa-
tion of the discrete wavelet transform can be implemented using a filterbank,
and is considered to be more efficient than the continuous wavelet transform
[9].
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Figure 2.2: A scalogram representation of, on the left, a drum beat and, on
the right, an excerpt from a piano piece (the same audio as the
spectrograms in figure 2.1).

Wavelet scalograms The scalogram is a method of representing the
wavelet transform, much as a spectrogram might represent a Short time
Fourier transform, both are time-frequency representations of a signal. In
the case of the wavelet scalogram, the absolute values of the wavelet
coefficients are represented, and frequency is actually derived from the
wavelet scale parameter (though sometimes wavelet scale is used instead
of frequency). Due to the Heisenberg-Gabor uncertainty, these should
not be thought of as direct representations of the energy at each point in
time and scale, rather they should be thought of as representations of the
energy density over each point in time and scale [10].

2.3 Properties of Wavelets

Admissibility condition There are an infinite number of possible wave-
lets [1]. For our purposes, the conditions of what shall constitute an accept-
able mother wavelet are that it shall have support within a finite interval
(compact support), and that it shall have an average value of zero in the
time domain [11]. This allows the wavelet to maintain a constant energy
when dilated, meaning that at all scales the wavelet will have the same
energy. The admissibility condition as described in [11] can be written as:∫ |Ψ(ω)|2

|ω| dω < +∞ (2.5)

Where Ψ(ω) is the Fourier transform of the mother wavelet. This means
that over all frequencies, the Fourier transform of the mother wavelet is
finite. The admissibilty condition implies that the Fourier transform of the
mother wavelet vanishes at a frequency of zero.

6
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2.3.1 Common Wavelets

Haar Wavelets According to [1] the first reference to wavelets occurred
in an appendix to a thesis by Alfréd Haar, though the term wavelet was not
used until much later. The Haar mother wavelet as defined in [12] can be
represented using the piecewise function:

ψ(t) =


1, if 0 ≤ t < 1/2,
−1, if 1/2 ≤ t < 1,
0, otherwise

(2.6)

The Haar wavelet was devised as an orthonormal system that could be
used as an alternative to the trigonometric system used in the Fourier
transform for the approximation of functions [13]. Wavelets are considered
to be "basis vectors in high-dimensional spaces" [14], which is to say that
any point in the high dimensional space can be represented by only one
combination of these vectors. The Haar wavelet basis function has the
additional property of being orthonormal (i.e. the dot product of these basis
functions is zero).

Morlet wavelets Morlet wavelets were first used by geologist Jean Morlet
in his afformentioned adaption of the Gabor transform [8]. Morlet wavelets
are defined in [15] as:

ψa,b(t) = exp
[
−β2(t− b)2

a2

]
cos

[
π(t− b)

a

]
(2.7)

With scaling and shifting parameters a and b.

Ricker wavelets The Ricker wavelet is also known as the Mexican hat
wavelet. It is defined in [16] as:

Ricker(t) = (1− 2π2 f 2t2) exp(−π2 f 2t2) (2.8)

Where the parameter f defines the wavelet’s peak frequency in the fre-
quency domain representation of the wavelet.

2.4 Time Frequency Analysis of Music

The use of digital signal processing techniques to provide new insight into
music is relatively common [17]. Time-frequency analysis is particularly
suited to musical analysis since all music can be understood in terms of
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both time and frequency. The paper Time-frequency Analysis of Musical
Rhythm [18] written by Cheng et al. discusses, in the context of music,
the use of spectrograms such as those used displayed in figure 2.1 and
wavelet scalograms such as those seen in figure 2.2 and their applications
in analysing rhythm. When observing time-frequency representations of
music it is common to see, corresponding to an event, a region of high
amplitude (known as the root) succeeded along the axis in which the fre-
quency is represented by higher frequencies of a lower amplitude known as
harmonics. Though the root defines the prevalent note that we would hear
when listening to the sound, the harmonics define many of the characterist-
ics of the sound. The importance of good time-frequency representations
for the analysis of sound is clear and the wavelet transform has properties
that make it effective for this purpose, but also properties that make it less
effective for this purpose. The symmetry of common wavelets as discussed
later in section 2.5 represents an issue with the wavelet transform’s applic-
ation in musical analysis, since it can confuse the time at which a musical
event (e.g. a drum beat) is perceived to have started, and might thus affect
the determination of rhythm from a wavelet transform.

2.5 Causal Wavelets

Motivation for causal wavelets In [19] a causal system is described as
a system that "cannot have output before input is applied", the authors
provide the example of an active sonar system, where "an echo cannot
be detected before a pulse is sent". The belief presented in [19] is that
a method that enforces the feature of causality in the wavelet transform
should be better in terms of the signal to noise ratio, since the "kernel is
absolutely zero for times that are forbidden by the law of causality"[19]. This
also makes sense in the context of analysis of other systems, for instance
in the analysis of musical signals it does not make sense to detect a drum
beat or a note on the piano before the drum is struck or the piano key is
played. However, this causal representation of events is not inherent to the
wavelet transform. The most common families of wavelets are symmetric
or antisymmetric meaning that, for instance, transients will be represented
within the wavelet transform before they actually occur.

The causal wavelet The causal mother wavelet as used in [19] is an
adaption of the Morlet wavelet and is given by:

h(t) =

{
cos(5t) exp(−t/2) + j sin(5t) exp(−t/2), for t ≥ 0,
0 otherwise

(2.9)

8
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2.6 Conclusions

In this chapter I have discussed, in the context of existing literature, the
wavelet transform in terms of some of the signal processing techniques
that preceded it, the differences between the continuous and discrete
wavelet transform, the properties of wavelets, the applications of the wavelet
transform to the analysis of sound, and the qualities of the causal wavelet.
I hope that the motivations for the investigation of causal wavelets have
been made clear.

9



3 Problem Analysis

3.1 Introduction

The best method I can conceive of for representing the objectives is to con-
strue them in terms of the requirements of a system that can perform tasks
related to these objectives (e.g. perform a continuous wavelet transform).
As such, the system that fulfils these objectives will be able to perform
wavelet transforms using a variety of wavelets and provide the tools neces-
sary to perform comparisons of these transforms. Minimising distortion will
remain a general objective rather than a requirement.

3.2 Internal Representation

The prerequisites for performing a continuous wavelet transform are as
such: a signal, a specified wavelet, and a range of scales over which
the transform is performed. A system that performs a continuous wavelet
transform using this data will need methods that appropriately handle the
discrete nature of the components, and the output as well.

A1 The system shall accept and utilise discrete time signals.
A2 The system shall have a method of importing audio signals.
A3 The system shall accept and utilise any possible wavelet.
A4 The system shall accept and utilise any set of positive real

number scale parameters.
A5 The system shall provide the wavelet transform of the inputs in

discrete dimensions that match those of the signals and those
of the scales.

Table 3.1: Table of requirements regarding inputs and the representation of
data within the system

10
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3.3 Graphical Representation

For the purposes of analysis, it is important that there be a way to produce
graphical representations of the signal, wavelet and the transform. There-
fore, the system used should be able to represent plots of the signal and
wavelet, and a scalogram (as discussed in the literature review section 2.2)
of the wavelet transform.

B1 The system shall produce time domain plots of signals.
B2 The system shall produce time domain plots of wavelets.
B3 The system shall produce scalogram representations of

wavelet coefficients.

Table 3.2: Table of requirements regarding graphical representation of data
by the system

3.4 Metrics

As this project is investigating causal wavelets, it is important that there
is some measure of causality derived from the wavelet transform. This
way we can compare how causal a wavelet might be in comparison to
another. Thus, the system must have some method that calculates a metric
for comparing how causal a particular transform is with reference to the
signal.

The distortion present in wavelet transforms that utilise asymmetric wave-
lets is an artefact that is to be compared between different wavelets, since
a goal of this project is to minimise this. Therefore the system should also
have some method of calculating this distortion.

C1 The system shall contain a method that calculates a metric
describing how well a transform obeys the constraint of
causality.

C2 The system shall contain a method that calculates a metric
describing the distortion present in a wavelet transform.

Table 3.3: Table of requirements regarding metrics calculated by the system

11



4 Design and Implementation

This chapter will discuss the approach to the design and implementation of
a system that fulfils the requirements set out in chapter 3.

4.1 Selecting an Environment

There are numerous options for programming environments that can be
used to implement the above requirements. Some have existing features
and tools related to the wavelet transform. From these, I have elected to
discuss Wolfram Mathematica, Matlab and Python as these are the three
platforms that I have attempted to use.

Wolfram Mathematica Mathematica is a technical computing system
with a vast repertoire of tools, including an implementation of the con-
tinuous wavelet transform [20]. It uses a proprietary language called the
Wolfram Language, which blends elements of functional and rule based pro-
gramming (amongst other paradigms), and has strong support of symbolic
computation.

Matlab Matlab is a numerical computing environment. In many ways
it differs little form Mathematica, it too has a wide range of inbuilt tools,
and a proprietary programming lagnuage. The programming paradigm
employed by Matlab is substantially less supportive of symbolic computing
than Mathematica, and adopts more of a procedural, object-orientated
paradigm. Matlab also has an implementation of the continuous wavelet
transform [21].

Python The Python environment differs from the above two computing
environments in that it is simply a combination of programming langauge
and interpreter. The standard Python distribution does not provide a wide
variety of tools, but it does have a significant repository of open-source lib-
raries. One such package with support for the continuous wavelet transform
is PyWavelets [22].

12
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4.1.1 Comparison of environments with regards to
requirements

Inputs and data representation All of the above environments are cap-
able of satisfying these requirements. A2, for instance, is a common
feature with almost exactly comparable methods between these environ-
ments. However, when considering the compatability of some of these
requirements in the context of both Matlab and Mathematica, the inbuilt
functionality might match our requirements, but somewhat complicates its
performance.

A3 is possible within the provided frameworks of these environments.
Mathematica requires a complex specification of the wavelet properties in
order to use a custom defined wavelet within its framework, first requiring
a specification of whether the wavelet is orthogonal and/or biorthogonal,
then requiring a specification of a set of filter coefficients in order to define
the wavelet.

Matlab requires that wavelets are defined within the framework of a
tool named ’wavemngr’, to which wavelets are saved before they can be
used in Matlab. The ’wavemngr’ tool does match our A3 requirement,
but obfuscates the parts of the process. Though it should be mentioned
that the source code is accessible through Matlab, Matlab’s source is very
complicated to navigate.

The aforementioned PyWavelets Python package has a method for defin-
ing custom wavelets, but only supports the use of these custom wavelets
in the discrete wavelet transform, thus failing requirement A3.

It seems that in order to best fulfil the requirements regarding repres-
entation of data and inputs, I require an environment that has support for
defining custom wavelets in terms of the wavelet function, can employ these
custom wavelets in a continuous wavelet transform, and has a suitable
degree of internal transparency.

Graphical representation of data All three of the proposed environ-
ments have support for all of the required graphical represenations. Math-
ematica and Matlab have built-in plot and scalogram functions, and there
are many Python data visualisation libraries available that can perform all
of the necessary plots.

Metrics Since the application of causal wavelets, in my experience of
researching this project, has appeared to be atypical to much of wavelet
analysis, it is not surprising that the metrics I have outlined in table 3.3 do
not appear to be built in to any of the environments. The functions that I

13
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might require in order to calculate these metrics however are present in all
environments.

Conclusion of environment selection After attempting to perform a
continuous wavelet transform with a custom defined wavelet in a number of
environments, I was frustrated to find that this relatively simple task was
relatively difficult to perform within the existing frameworks. After conferring
with my supervisor, it was decided that the best course of action would be
to implement the continuous wavelet transform from scratch. I have elected
to use Python for this implementation since it is the programming language
I have the greatest level of experience with.

4.2 Implementation of the Continuous Wavelet
Transform

In order to implement a system that performs the continuous wavelet
transform I elected to use an object orientated approach. My motivations for
this were that it allowed me to compare objects and their attributes/functions
to the requirements that I had specified in chapter 3, and that I found it
conceptually easier to develop with objects. Below is a discussion of objects
I used to implement the continuous wavelet transform and some of their
associated attributes and functions.

4.2.1 Implementation of signals

Attributes of the signal class The signal class has attributes defining
the x and y values of the signal, where the y values represent the amplitude
over the sampling points represented by the x values. These attributes fulfil
requirement A1.

Functions of the signal class The signal has a function for plotting the
signal plot_signal, which plots the signal (normalised) in the time do-
main, as specified by B1. The function from_wav_file is a constructor
that constructs a signal object from a .wav file.

4.2.2 Implementation of wavelets

Attributes of the wavelet class The wavelet class has attributes defining
the wavelet psi, the x values over which the psi is sampled, and an attribute

14
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Figure 4.1: On the left, a plot of a sin(3x) and on the right a plot of the
normalised signal of the piano excerpt (also used in figures 2.1
and 2.2) constructed using the from_wav_file constructor
function.

defining the datatype of the psi values (either a 64 bit float, or a 128 bit
complex conjugate represented by two 64 bit floats). As such I have chosen
a numerical representation of the wavelet rather than one that is defined
in each case by the function of the wavelet ψa,b(t). This allows me to fulfil
requirement A3.

Functions of the wavelet class The wavelet class has a function that
provides a graphical representation of the wavelet, this is titled
plot_wavelet. This function allows me to fulfil requirement B2.

The wavelet class has a function named get_scaled_wavelet. This
function returns a wavelet of a given number of samples at a given scale.
The sampling is done by linear interpolation of the wavelet’s psi values,
and the scaling is performed. One constraint is that the number of points
sampled should be directly proportional to the scale.

4.2.3 Implementation of continuous wavelet transform

Attributes of the continuous wavelet transform class The continuous
wavelet transform class is initialised using a signal object, a wavelet object
and a set of scales to be used in the transform. The scales can be any
set of positive real numbers (though naturally limited to the precision of
the datatype they are presented as), which fulfils requirement A4. The
continuous wavelet transform class has an attribute named transform which
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Figure 4.2: Plots of Ricker wavelet (on the left) and Morlet wavelet (on the
right) produced by plot_wavelet function.

Figure 4.3: Plots of Ricker wavelet (on the left) and Morlet wave-
let (on the right) at different scales produced by plotting
get_scaled_wavelet function.

contains the coefficients of the wavelet transform.

Functions of the continuous wavelet transform class The continuous
wavelet transform class has a function named perform_transform that
performs the continuous wavelet transform with the given parmeters upon
its instantiation. The peform_transform function is based on the time-
invariant dyadic wavelet transform proposed in [23], which is defined by:
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W f (u, 2j) = 〈 f , ψu,2j〉 =
∫ ∞

−∞
f (t)

1√
2j

ψ

(
t− u

2j

)
dt = f ? ψ̄2j(u) (4.1)

where:

ψ̄2j(t) = ψ2j(−t) =
1
2j ψ

(
−t
2j

)
(4.2)

The application of this is similar to that of the cwt function in the
scipy.signal.wavelets module [24]. To apply the transform as specified
in the above equations, the perform_transform function, at each scale
(scales should be provided in the form 2j), employs the
get_scaled_wavelet function of the provided wavelet object. The
returned array is reversed and convolved with the signal to provide the
wavelet coefficients at that scale. If the scale of the wavelet is such that
the number of samples exceeds the number of samples in the signal, the
number of samples in the scaled wavelet is fixed at the length of the sig-
nal. This does not prevent the wavelet from scaling properly, since the
get_scaled_wavelet function has separate parameters for the num-
ber of samples and the scale. Figure A.1 is a representation of coefficients
of the transform at the dyadic scales 2j.

The plotting functions of the wavelet function plot_scalogram
achieves requirements B3 by plotting a time-frequency representation of
the wavelet transform using the absolute values of the wavelet coefficients.
The plot_scalogram_contour performs a similar representation to
plot_scalogram except with a contour diagram. Figure 4.4 displays
the result of the plot_scalogram on the piano same piano excerpt from
figures 2.1 and 2.2.

4.3 Implementation of the Causal Wavelet

Adopting a similar equation to 2.9 (except time reversed) as the first defini-
tion for a causal wavelet, as proposed by Szu et al. in [19], a wavelet object
can be instantiated. This wavelet has real and imaginary parts as displayed
in figure 4.5. Any subsequent definition of a causal wavelet (such as the
adaption of the Ricker wavelet seen in section 4.5) is based on the same
technique of using just one half of the symmetric mother wavelet. These
causal wavelets pass the admissibility condition as specified in 2.3, with the
Fourier transform of the wavelet integrating to a finite value, and vanishing
at a frequency of zero.
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Figure 4.4: Scalogram representation of the same piano excerpt from fig-
ures 2.1 and 2.2, created using the plot_scalogram func-
tion from the continuous wavelet transform class.

Figure 4.5: Representation of the real and imaginary parts of a causal
wavelet as defined in equation 2.9.

When applying this wavelet in the case of a wavelet transform to a sta-
tionary signal, distortions of the coefficients in time seem to occur, such as
those seen in figure 4.6, with higher and lower frequencies being repres-
ented earlier or later. The time distortion present in the wavelet transform
is also reflected in the y axis when the causal wavelet is reflected in the y
axis, this effect can be seen in the transforms in the middle and right of the
figure.
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Figure 4.6: Contour representation of the wavelet transforms of the signal
sin(5x) between the values between 0 and 2π, note that the
y-axis values represent j, where the scales are selected using
2j and thus the axis is logarithmic (base 2). The transform on
the left was performed using a symmetric Ricker wavelet, the
transform in the middle uses the causal wavelet as represented
in 4.5, but reflected in the y-axis (though just the real part of the
transform is represented here), and the trasform on the right
uses the causal wavelet as represented in figure 4.5 (again only
the real part is represented here).

4.4 Implementing a Metric for Causality

When considering the requirement C1 from table 3.3 in the context of this
system, I realised that it would be difficult to approach implementing a
method of calculating a metric like this for signals in which more than one
event occurs, due to the difficulty in associating parts of the transform
to specific events. In order to simplify this, I have limited examination of
causality to transforms that are performed on signals in which only one
event occurs.

4.4.1 Implementing a causal signal

In examining the properties of the causal wavelet in the continuous wavelet
transform, it is likely best that the transform is applied to a signal that
conforms to the idea of a causal event. I will be refering to this signal
as the causal signal. The chief properties of this causal signal are that it
represents an oscilation, preceded by a signal with trivial amplitude, that
starts with an initially large amplitude and decays over time. This imagining
of a causal signal can be envisaged as a drum beat, a piano key being
struck, the echo from an object detected by a sonar system [19], amongst
many other types of signals. I have implemented a class that represents the
causal signals named DrumLikePulse (these signals when listened to,
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remind me of percussive beats), that initialises with parameters describing
the length of preceding silence, the length of the pulse in time, the features
of the pulse (e.g. initial amplitude, rate of decay, etc), and the length of
subsequent silence.

4.4.2 Determining the pulse train

The approach chosen for determining the time at which the event occurs
from the wavelet transform is based on the ’pulse train’ similar to that
described by Cheng et al. in [18]. This involves the thresholding of the local
energy function described by Smith in [17] as:

E(t) =

√√√√[ N

∑
n
<[Ws(t, n)]

]2

+

[
N

∑
n
=[Ws(t, n)]

]2

(4.3)

Where N is the number of scales, and <[x] and =[x] are the real and
imaginary outputs of the wavelet transform. The pulse train can thus be
defined as:

P(t) =

{
1, for E(t) ≥ ḡ
0, otherwise

(4.4)

Where ḡ is the average of E(t).

With this approach, a metric for causality can be contrived by subtracting
the time at which the signal starts from the time at which the first pulse
in the pulse train occurs. A positive value will indicate that the pulse train
started after the signal did, a value of zero will indicate that the pulse train
and the start of the signal coincide, and a negative value will indicate that
the pulse train started before the signal.

This has been implemented using a class named CausalityAnalysis,
that intialises with a ContinuousWaveletTransform object as its
single parameter. This calculates the energy function as specified in 4.3
using a funcion called energy_function. The pulse train is then cal-
culated as per the function 4.4 by the function get_pulse_train. This
allows for the metric as described above to be calculated using a func-
tion named get_delay. In figure 4.7 the delay for the continuous wavelet
transform using the symmetric Morlet wavelet was calculated to be −4.144,
and the delay for continuous wavelet transform performed using the asym-
metric causal wavelet was calculated to be 0.3440, thus showing that the
causal wavelet has the desired properties when contrasted with symmetric
wavelets.
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Figure 4.7: From top to bottom, the causal signal, its continuous wavelet
transform as represented by a contour scalogram, and the pulse
train as derived from the continuous wavelet transform. The
continuous wavelet transform on the left was performed using a
Morlet wavelet, and the one on the right is performed using the
causal wavelet as specified in 2.9.

4.4.3 Evaluation of the causality metric

Though I have concerns about the effectiveness of this metric, it does
serve as a rough metric that can be said to fulfil requirement C1. My
primary concern with this metric relate to the use of the pulse train, since
its use in the method is essentially to represent a belief about when the
wavelet transform starts. This is to say that a wavelet transform will not be
considered to start before its amplitude reaches a certain threshold. This
makes less sense in the pure scenario, where the signal is zero before
an event occurs and thus the wavelet transform can be zero until it is
considered to have started. However, in the context of real signals, noise in
the signal will result in non-zero values in the transform, necessitating the
use of some threshold. This thresholding introduces error, a threshold that
is too low will represent the start of the transform as having occured earlier
and a threshold that is too high, will set the start of the transform as having
happened too late. There might be more intelligent ways of deciding upon
a threshold than the simple use of the average that has been employed.
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4.5 Implementing a Metric for Distortion

4.5.1 How distortion might be interpreted

When setting the requirement C2 in table 3.3, I was aware that it would be
difficult to devise a term that adequately represents the distortion present
in the wavelet transform. As mentioned in the discussion of figure 4.6,
the distortion appears to be a shifting in time of the wavelet transform
dependent on the scale. Looking at figure 4.8, it appears that the sort
of distortion generated by the type of causal wavelet I have been using
results in higher frequency coefficients being represented earlier and lower
frequency components being represented later. Therefore, one possible
measurement of distortion might be the average angle (from a straight
vertical line) which occurs in the coefficients when represented in this way.

Figure 4.8: A comparison of the wavelet scalograms between Morlet and
Ricker wavelets and their adpated causal counterparts, where
each scalogram corresponds to the wavelet depicted above it.
Reading Morlet, Ricker, causal Morlet, causal Ricker from left
to right.

4.5.2 Implementing a measurement based on angle

Implementing this approach presented a number of difficulties, chief amongst
which was finding a repeatable algorithm for finding the angle. The method
I settled on is applied using a class called DistortionAnalysis, which
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has a function named get_lines, taking as its parameters two scales
and a range. The function finds all the local maxima of the wavelet trans-
forms at the two scales that it has been provided, and matches pairs of
maxima between the scales within the given range, returning lines (as pairs
of coordinates) that can be used to represent the distortion. Figure 4.9
shows the results of this function by plotting the results of this analysis over
the contour scalogram.

Figure 4.9: Comparison of a wavelet transform performed with a Ricker
wavelet and the causal adaption of the Ricker wavelet (as rep-
resented by the second and fourth wavelets in 4.8), and the
lines between associated maxima of two specified scales that
have been determined as per the get_lines function.

The angle can be calculated by treating these lines as vectors and taking
the angle between this line and the unit vector [0,−1]. It is important to
note that the representation of scales here is logarithmic and also that
the image representation is not a one-to-one scale representation of the
axes. The only way this metric might be used is comparatively, since it
is largely dependent on a host of factors, and even then, it should only
be used to compare wavelet transforms that have been performed on the
same signal, over the same set of scales, with the same x-dimensions.
The angles determined for the analysis in 4.9 are 0.00490◦ for the Ricker
wavelet and 0.00681◦ for the adapted causal Ricker wavelet, thus showing
that the causal wavelet does create more distortion than the symmetric
wavelet. Note that the angles are dependent on the scales employed in the
x and y axis.
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4.5.3 Evaluation of the distortion metric

Though, to some extent, this metric fulfils requirement C2, I am not satsified
with it. Given the implementation I have constructed, I do not believe that
my code performs my specified method in the best way possible, or that
my specified method (i.e. finding vectors that to some degree represent
the distortion) is necessarily a good way of measuring distortion. The
functions used rely heavily on user specified parameters, some of which,
for the purposes of making this a more objective measurement, should
be determined as expressions of the transform rather than arbitrarily. The
method by which local maxima are associated is certainly not a reliable one,
since it is just by proximity along the x-axis within a specified range that
maxima are matched with each other. This requires that a user can verify
that the resultant lines do indeed match the distortion visible on a scalogram
(hence the function plot_lines_on_scalogram). Ideally, the method would
instead use the maxima in the scales between the points to determine the
most probable line between them, though this consideration alone casts
doubt upon the usefulness of my angle based metric, especially given that
the angle alone is not guaranteed to represent such a useful statistic when
discussing the types of distortion present in the wavelet transform. Future
work could ascertain better measurements of distortion and more reliable
ways of measuring them. Despite this, I think that a nice feature of this
method is that it produces a single measurement, taken from the average of
the angles derived, which has at least comparative applications that make
it suitable for my purposes.

4.6 Application to sound

Using the from_wav_file constructor function discussed in 4.2.1 the
causal wavelet can be applied within the context of real audio signals.

Audio Standard
Morlet

Causal
Morlet

Standard
Ricker

Causal
Ricker

Drum 0.00095s 0.00170s 0.00093s 0.00170s
Piano 0.01947s 0.02108s 0.01951s 0.02108s

Table 4.1: Delay as measured by the get_delay function described in
section 4.4 using snippets of the same drum and piano excerpts
displayed in figures 2.1 and 2.2.

Looking at the results in table 4.1, it appears that the causal wavelets
perform as expected, with the delay between the start of the signal and
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Audio Standard
Morlet

Causal
Morlet

Standard
Ricker

Causal
Ricker

Drum 0.00174◦ 0.0366◦ 0.00174◦ 0.00368◦

Piano 0.00197◦ 0.00375◦ 0.00197◦ 0.00378◦

Table 4.2: Average angle of distortion as measured by the get_angles
function in the DistortionAnalysis class.

the start of the pulse train being greater in all instances of causal wavelets
being applied than in their symmetric counterparts.

Note that the positive values in all cases indicate that the pulse train be-
gins after the signal does. This does not indicate that the wavelet transform
begins after the signal, rather that the pulse train (as specified in 4.4) is
calculated to begin after the start of the signal. With the application of a dif-
ferent threshold to determine the pulse train (as discussed in section 4.4.3)
results for the specific values of the delay might have varied significantly.
The trend of the transform performed with a causal wavelet beginning later
should not vary.

Similarly, the values depicted in table 4.2 seem to confirm that there is
a distortion of the transform present in the transforms performed with the
causal wavelets relative to those performed using symmetric wavelets since
the average angle is greater. However, as discussed in section 4.5.3 it is
important to state that this measurement is untested and should not be
taken as an absolute measurment of distortion, only a relative one.

4.7 Modifying the causal wavelet

Now that a system is in place that performs as the requirements specify, my
aim is to apply this system to the comparsion of several causal wavelets.
For this purpose I will be modifying the causal wavelet defined in equation
2.9, by changing the constant that defines the frequency of the sinusoid,
which assumes a value of 5 in the case of equation 2.9, but still produces
admissible wavelets when changed. By increasing the value of this constant,
the wavelet tends towards a cosine function, which generally results in
a transform with better frequency resolution. By decreasing the value,
the wavelet tends towards a Dirac function, which generally results in a
transform with better time resolution [15]. As such, the equation that will be
used for the causal wavelet in this section is:

h(t) =

{
cos(kt) exp(−t/2) + j sin(kt) exp(−t/2), for t ≥ 0,
0 otherwise

(4.5)
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Where k is the aforementioned constant.

Following my evaluation of the distortion metric in section 4.5.3, I decided
that the comparison of these wavelets should use a more consistant method
of selecting the scales by which to calculate angles. The method employed
finds the coefficient with maximum value in the transform, selects the scale
in which that coefficient occurs as a central scale, and selects equidistant
scales above and below the central scale to be used for the calculation of
distortion. Previously I had been thresholding the maxima that could be
used in the calculation of distortion, such that only maxima above a certain
amplitude would be used. This was done as a precaution to limit the effect
of noise on the results. However, in setting this threshold to zero I found
that the calculation of the angles improved.

Figure 4.10: Above, real coefficients of wavelet transforms of a pulse like
signal (the same as that used in figures 4.7, 4.8, and 4.9)
using wavelets as defined by 4.5, with the calculated vectors
between the local maxima of two scales represented by the
red lines. Below, a representation of the average angle of the
distortion (in degrees) against the constant used in defining
the frequency of the causal wavelet used in the transform, as
specified in 4.5).

When looking at figure 4.10, the obvious result of increasing the frequency
of the wavelet is better localisation in the transform in frequency. However
it seems that the average angle of the distortion present in the transform
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increases linearly as the frequency of the wavelet increases. It therefore
appears that, added to the time-frequency tradeoff of the frequency of the
wavelet, better frequency localisation with the causal wavelet comes with
greater distortion.

4.8 Modifying the continuous wavelet
transform

From the results of section 4.7, it seemed that a modification to the wavelet
transform that applies a wavelet modulated in frequency as it is modulated
scale could perhaps be used to rectify the distortion present in the wavelet
transform performed with a causal wavelet.

Implementation In order to implement this modified wavelet transform, a
modified version of the ContinuousWaveletTransform object named
ModifiedContinuousWaveletTransformwas used, which employs
a modified Wavelet object named CausalMorletModifiedWavelet.
The transform applied by this implementation differs from the previous in
that the causal adaption Morlet wavelet used is modulated in frequency
as well as scale, as the frequency of the wavelet is defined by the scale
divided by some constant. This tampers with the continuous wavelet trans-
form in many ways that significantly limit its applications. In the standard
wavelet transform, scale and frequency are inversely proportional, but since
the internal frequency of the wavelet is being modulated, the relationship
between scale and frequency is no longer clear.

Analysis Standard
Morlet

Causal
Morlet

Modified
Causal
Morlet

Delay −0.00622s 0.00155s 0.00114s
Average angle 0.00084◦ 0.00697◦ 0.00281◦

Table 4.3: Delay measured using the CausalityAnalysis and aver-
age angle of as measured by the get_angles function in the
DistortionAnalysis class of the transforms seen in figure
A.2.

This modification to the transform, when performed within similar scales,
seems to have the effect of minimising the distortion, while maintaining the
causal behaviour, as can be seen in figure A.2 and table 4.3. However, this
improvement comes at the cost of confusing the relationship between scale
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and frequency, which significantly impacts the analytical applications of this
method. Also, when increasing the scale past this point, it becomes ap-
parent that there is some other, perhaps more significant form of distortion
present.
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5 Conclusions

Throughout this report I have discussed my progress in terms of the require-
ments I set out in chapter 3. This has been a useful method for dividing
up the task into achievable parts. The purpose of the requirements was to
be restrictive and therefore measurable, and for the most part I feel that
all of them have been met, that the methods by which they have been
met have been described, and that these methods have been evaluated
in terms of their abilities and their possible deficiencies in the fulfilment
of the requirements. I feel that all requirements listed performed well as
requirements, though if better requirements might have been in order, then
this should have been explicitly stated. New requirements can be inferred
for future work from the evaluation in these subsequent paragraphs. For
this reason, in this chapter I will evaluate the system in more general terms
than the requirements.

Implementation of the continuous wavelet transform I am mostly sat-
isfied with the implementation of the continuous wavelet transform. Multiple
environments and algorithms for the transform were tested before arriving
at this implementation. The results achieved and the plots produced using
the implementation matched my expectations, and the object orientated
structure allowed the flexibility to prototype and experiment with different
wavelets in an expedient fashion. However, this flexibility is in some senses
a potential problem. The lack of testing within the implementation allowed
for fast application of irregular wavelets, but provided no assurances about
the viabilty of the output. Equally, the lack of useful error messages ensures
that any other user is going to have little idea of why the system might
break. Were development continued, even for just for personal use, at least
a few tests and meaningful error messages would need to be implemented.

Implementation of metrics In some sense I am satisified with the im-
plementation of the metrics describing the causality of the transform with
relation to the signal and the distortion within the transform, provided that
they are used in the context of comparision for transforms of the same
signals. I have largely discussed this in sections 4.4.3 and 4.5.3, but I do
not believe these methods necessarily make objective representations of
what they represent. The use of the method whereby the scales used in
the calculation of the distortion metric were selected, as in sections 4.7 and
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4.8, as scales equidistant from the scale containing the greatest coefficient,
proved a decent method of making the calculation of the metric a little more
reliable. Nonetheless, future work could focus on finding more objective
methods for these types of measurements. It would also be useful to have
a method for calculating the inherent uncertainties in the results found.

Application to sound This chapter can be imagined as a proof of the
implementation. It is the application of the theory explored in the previ-
ous sections and the system developed throughout chapter 4 to the real
instances of audio signals. This chapter does, to some extent, confirm that
the use of causal wavelets in a wavelet transform creates the predicted
effects of causality and distortion in the transform. In all cases, the wavelet
transform of the audio as performed with a causal wavelet can be measured
to begin later than the transform as performed with a symmetric wavelet. In
all cases, the wavelet tranform performed with a causal wavelet appeared
to have a greater average angle of distortion than that of the transform
as performed with a symmetric wavelet. A more extensive analysis and
comparison of the transforms of these audio files would have been interest-
ing, but the application here does serve the purpose of demonstrating the
viabilty of these sorts of causal wavelet transforms for the analysis of real
signals.

Modifying the causal wavelet and continuous wavelet transform The
approach in sections 4.7 and 4.8 was perhaps not the optimal approach that
could have been taken to solving the problem. There are rather significant
issues with the solution that was arrived at, despite its seeming to perform
well by the casuality and distortion metrics. Most notable is its seeming
failure to properly localise the signal in the frequency domain. Although
imperfect, the method employed does seem to fulfil its goal of correcting
the distortion within a certain set of scales, though I am inclined to doubt
its suitabilty for the purpose of analysis. Future work could verify if this
method is reliable and, if so, what adpations of it produce the best results.
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A Appendix:Large Figures

This chapter is for large figures that I have elected not to represent in the
body of the report.

Figure A.1: Wavelet transform coefficients from the peform_transform
function on a fraction of an audio signal at the dyadic scales 2j.
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A Appendix:Large Figures

Figure A.2: Comparison of scalograms created by wavelet transform of a
pulse using a symmetric Morlet wavelet, the causal adaption of
the Morlet wavelet, and a modified causal wavelet transform of
the modified causal wavelet (top to bottom).
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